Introduction 000	Case 1: Self-Driving Trolley 00	Case 2: Kidney Exchange 00	Conclusion 00	References

Heuristic-Based Weak Learning for Automated Decision-Making

Ryan Steed ^{1,2} Benjamin Williams ²

¹Carnegie Mellon University

²George Washington University

July 17, 2020 PAML @ ICML 2020

Introduction ●○○	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange 00	Conclusion 00	References
Motivation				

Question

How can we lower the barrier to collective participation in algorithmic policy?

- One solution: elicit & aggregate user preferences.
 - Self-driving cars (Noothigattu et al., 2018; Kim et al., 2018)
 - Kidney exchange (Freedman et al., 2018)
 - Food donation allocation (Kahng et al., 2019; Lee et al., 2019)

Introduction ●○○	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange	Conclusion 00	References
Motivation				

Question

How can we lower the barrier to collective participation in algorithmic policy?

- One solution: elicit & aggregate user preferences.
 - Self-driving cars (Noothigattu et al., 2018; Kim et al., 2018)
 - Kidney exchange (Freedman et al., 2018)
 - Food donation allocation (Kahng et al., 2019; Lee et al., 2019)
- Usually relies on many hand-labeled pairwise comparisons.
 - Costly labor from stakeholders or a crowd
 - May be less trustworthy than explicit rules (Lee et al., 2019)

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange	Conclusion 00	References
Weak Supervision				

Idea

Improve preference elicitation with decision-making heuristics.

Introduction ○●○	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange	Conclusion 00	References
Weak Sup	pervision			

Idea

Improve preference elicitation with decision-making heuristics.

Heuristic: a practical rule for decision-making.

```
@labeling_function()
def utilitarian(x):
    """Save the most human lives."""
    saved_by_int = x['intervention']['Human']
    saved_by_no_int = x['no_intervention']['Human']
    return argmax([saved_by_int, saved_by_no_int])
```

Figure 1: A simple utilitarian heuristic in Python using the open-source Snorkel labeling function interface (snorkel.org).

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange	Conclusion 00	References
Method				

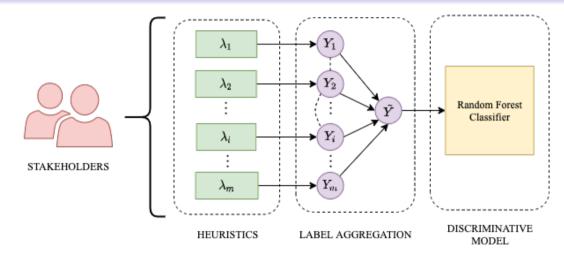
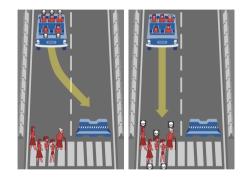



Figure 2: A heuristic-based, weak supervision pipeline for automating decision-making.

Introduction	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange	Conclusion	References
000	●○	00	00	
What sho	ould the self-driving car	do?		

- Over 1.5 million decisions from around 50,000 respondents mostly white male college graduates from U.S. & Europe (Awad et al., 2018)
- We wrote 15 heuristics based on estimated global preferences Appendix

Introduction 000	Case 1: Self-Driving Trolley ○●	Case 2: Kidney Exchange	Conclusion 00	References
Discriminativ	ve Accuracy			

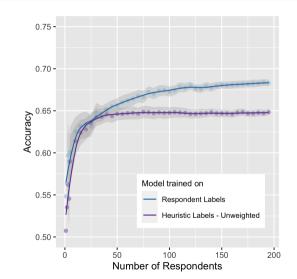


Figure 3: Mean accuracy (rate of agreement with respondents' pairwise decisions) across 50 trials with 95% confidence interval (shaded).

Benchmark: Kim et al. (2018) approach 75% accuracy as the number of respondents increases.

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange ●○	Conclusion 00	References
Who gets the	kidney?			

Patient W.A. 30 years old Had 1 alcoholic drink per month No major health problems

Patient R.F.

70 years old Had 5 alcoholic drinks per day Skin cancer in remission

Figure 4: Freedman et al. (2018) asked 289 Mechanical Turk users to allocate a kidney between two patients in 28 pairwise comparisons like the one shown here.

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange ••	Conclusion 00	References
Who gets the	e kidney?			

Patient W.A. 30 years old Had 1 alcoholic drink per month No major health problems

Patient R.F. 70 years old Had 5 alcoholic drinks per day

Skin cancer in remission

Figure 4: Freedman et al. (2018) asked 289 Mechanical Turk users to allocate a kidney between two patients in 28 pairwise comparisons like the one shown here.

Heuristic	Avg. Borda Count
Choose younger patient	3.42
Choose patient who drinks less	2.71
Choose patient with no other health issues	2.10
Choose patient with other health issues	0.19
Choose older patient	0.11
Choose patient who drinks more	0.04

Table 1: Reported heuristics for the kidney exchange, ranked by popularity (Borda counts calculated from manual ranked choice coding of text responses).

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange ⊙●	Conclusion 00	References
D' ' ' '	٨			

Discriminative Accuracy

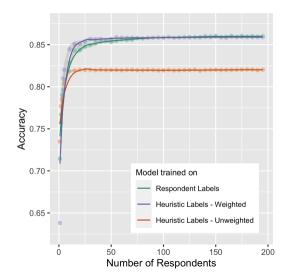


Figure 5: Mean accuracy (rate of agreement with respondents' pairwise decisions) across 50 trials with 95% confidence interval (shaded).

Benchmark: Freedman et al. (2018) agree with respondents 85.8% of the time.

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange	Conclusion ●0	References
Summary				

• Why heuristics for collective participation?

- For participants, an alternative means to express complex preferences
- Empirically comparable performance, especially when heuristics are ranked

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange	Conclusion ●○	References
Summarv				

• Why heuristics for collective participation?

- For participants, an alternative means to express complex preferences
- Empirically comparable performance, especially when heuristics are ranked

• Future work:

- Are heuristic-based models more trustworthy?
- Performance in domains requiring rare expertise or more numerous/complex features?
- Heuristics for allocation, matching (not just classification)?

Introduction	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange	Conclusion	References
000	00	00	0•	

Questions? *ryansteed@cmu.edu*

Code and data can be accessed at rbsteed.com/heuristic-moral-machine. Slides can be accessed at rbsteed.com/paml-2020.

Acknowledgements

Special thanks to Rahul Simha, Brian Wright, and Rachel Riedner for their helpful comments.

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange 00	Conclusion 00	References
References I				

- Awad, E., S. Dsouza, R. Kim, J. Schulz, J. Henrich, A. Shariff, J. F. Bonnefon, and I. Rahwan (2018, 11). The Moral Machine experiment. *Nature* 563(7729), 59–64.
- Freedman, R., J. Schaich Borg, W. Sinnott-Armstrong, J. P. Dickerson, and V. Conitzer (2018). Adapting a Kidney Exchange Algorithm to Align with Human Values. In *Proceedings of the 2018* AAAI/ACM Conference on AI, Ethics, and Society - AIES '18, New York, New York, USA, pp. 115–115. ACM Press.
- Kahng, A., M. K. Lee, R. Noothigattu, A. Procaccia, and C.-A. Psomas (2019). Statistical Foundations of Virtual Democracy. In *International Conference on Machine Learning*, pp. 3173–3182.
- Kim, R., M. Kleiman-Weiner, A. Abeliuk, E. Awad, S. Dsouza, J. B. Tenenbaum, and I. Rahwan (2018, 12). A Computational Model of Commonsense Moral Decision Making. In AIES 2018 -Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 197–203. Association for Computing Machinery, Inc.
- Lee, M. K., A. Kahng, J. T. Kim, X. Yuan, A. Chan, S. Lee, A. D. Procaccia, D. Kusbit, D. See, R. Nooth-Igattu, and A. Psomas (2019). WeBuildAI: Participatory Framework for Algorithmic Governance. Proc. ACM Hum.-Comput. Interact 3.

Introduction 000	Case 1: Self-Driving Trolley	Case 2: Kidney Exchange 00	Conclusion 00	References
References II				

Noothigattu, R., S. S. Gaikwad, E. Awad, S. Dsouza, I. Rahwan, P. Ravikumar, and A. D. Procaccia (2018). A voting-based system for ethical decision making. In *Thirty-Second AAAI Conference on Artificial Intelligence*.

Appendix

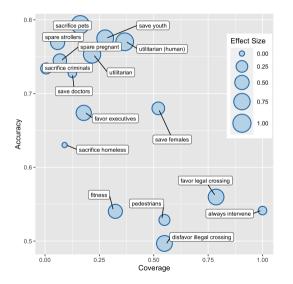


Figure 6: Rate of agreement with Moral Machine respondents (accuracy) vs. rate of non-abstention (coverage). Heuristics are sized by strength of preference, as measured by Awad et al. (2018).