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Pre-training: natural language→ computer vision

The man worked as...
> a car salesman at the local Wal-Mart

The woman worked as...
> a prostitute under the name of Hariya

Example text generation with GPT-2 (Radford et al., 2019)
reproduced from Sheng et al. (2019).
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Research Question

Is there evidence of systematic bias in image representations
learned with unsupervised pre-training?
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Methods: implicit cognition→ natural language→ computer vision

Implicit Association Test (IAT)
(Greenwald et al., 1998)

• Tests for differential association of
two concepts

• Easier to categorize
stereotype-congruent pairs

• Harder to categorize
stereotype-incongruent pairs

• Effect d = difference in reaction time
Weapon IAT (implicit.harvard.edu)
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Methods: implicit cognition→ natural language→ computer vision

Word Embedding Association Test
(Caliskan et al., 2017)
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Word Embedding Association Test (WEAT)
(Caliskan et al., 2017)

s(w, A,B) = meana∈A cos(w, a)−meanb∈B cos(w,b)

s(X, Y, A,B) =
∑
x∈X

s(x, A,B)−
∑
y∈Y

s(y, A,B)
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Methods: implicit cognition→ natural language→ computer vision

Image Embedding Association Test (iEAT)

s(X, Y, A,B) =
∑
x∈X

s(x, A,B)−
∑
y∈Y

s(y, A,B)

s(w, A,B) = meana∈A cos(w, a)−meanb∈B cos(w,b)

⇒ Effect size d,p-value p
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Replicating IATs: visual stimuli

• Replicated 14 IATs - including 3 picture-only IATs & 5 mixed-mode IATs
• Used the same stimuli as the original IATs (Greenwald et al., 2003)
• Collected multiple exemplars for each stimuli data @ rbsteed.com/ieat

• Original IAT (if available)
• CIFAR-100 (Krizhevsky, 2009) (if available)
• Google Image Search search terms @ rbsteed.com/ieat
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Replicating IATs: valence stimuli

9 valence IATs (e.g. Flower, Insect vs. Pleasant, Unpleasant)

word pleasantness imagery
beach 4.51 4.82
sunrise 4.68 4.75

...
...

...
jail 1.51 4.44

morgue 1.50 3.89

Bellezza et al. (1986)
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Results: IAT replications
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Results: intersectional bias

Testing 3 hypotheses from social
psych (Ghavami and Peplau,
2013):
• Race: racial bias ∼ male ×
race bias

• Gender: gender bias ∼
White × race bias

• Intersectionality: emergent
race × gender biases

Our results 9
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Where does this bias come from?

Pre-trained on
Sourced from the internet
(Russakovsky et al., 2015)
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Where does this bias come from?

• ImageNet categories unequally represent race & gender (Yang et al., 2020)
• Datasets scraped from Flickr portray gender unequally across categories
(Wang et al., 2020; Prabhu and Birhane, 2020)

From Wang et al. (2020): frequency of gender appearances by category in COCO (Lin et al., 2014).
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Where does this bias come from?

• ImageNet categories unequally represent race & gender (Yang et al., 2020)
• Datasets scraped from Flickr portray gender unequally across categories
(Wang et al., 2020; Prabhu and Birhane, 2020)

From Prabhu and Birhane (2020)’s dataset audit card for ImageNet 2012,
gender skew in human co-occurrences with several “dog” subclasses.
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Case study: iGPT mimics visual stereotypes

Image completion with iGPT, pre-trained on ImageNet. From Chen et al. (2020).
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Case study: iGPT mimics visual stereotypes

Completion of artificial female faces with iGPT, pre-trained on ImageNet.

Of 40 completions of 5 faces, 52.5% feature bikinis or low-cut tops.
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There’s bias in unsupervised computer vision. What now?

• Limitations→ future work
• Larger, newer, & proprietary models/datasets, e.g. Dosovitskiy et al. (2021)
• Extend to new, non-binary categories
• Formalize/document connections to task-specific behavior

• Greater (pre-)caution developing unsupervised CV
• Consider and catalogue representation in data collection
• Extensive auditing for representational harms
• Value-sensitive design (Friedman et al., 2008)
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Questions?
ryansteed@cmu.edu

rbsteed.com/ieat
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Replicating IATs

IAT from (Nosek et al., 2007) X Y A B d
Baseline
Insect-Flower Flower Insect Pleasant Unpleasant 1.35
Stereotype
Asian* European American Asian American American Foreign 0.62
Gender-Career Career Family Male Female 1.10
Gender-Science Science Liberal Arts Male Female 0.93
Native* European American Native American U.S. World 0.46
Weapon* White Black Tool Weapon 1.00
Valence
Age† Young Old Pleasant Unpleasant 1.23
Arab-Muslim Other Arab-Muslim 0.33
Disability† Disabled Abled 1.05
Race† European American African American 0.86
Religion Christianity Judaism -0.34
Sexuality Gay Straight 0.74
Skin-Tone† Light Dark 0.73
Weight† Thin Fat 0.83
* Visual mode (image-only stimuli). † Mixed-mode (image and verbal stimuli).
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