
Ryan Steed1, Swetasudha Panda2, Ari Kobren2, Michael Wick2

1 Carnegie Mellon University
2 Oracle Labs

Upstream Mitigation Is Not All You Need
Testing the Bias Transfer Hypothesis in Pre-Trained 

Language Models

ACL 2022



I want to fine-tune a 
pre-trained model…

… but what do I do 
about its biases*?

*differences in model behavior towards marginalized groups
that lead to representational or allocational harms
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What We Find

● Mitigating bias in the pre-trained model may not help 
behavior after fine-tuning

● Curating the fine-tuning dataset is more promising…

● … but pre-trained models can still confer prejudices
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The Bias Transfer Hypothesis
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Pre-trained models have social biases…
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From Abid et al. (2021)
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… and so do fine-tuned models
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Does upstream bias lead to downstream bias?
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Suppose this hypothesis is true:
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Bias in one, centralized 
pre-trained model →
bias in many task-specific 
models…
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Upstream bias
leads to 
downstream bias

Bias transfer hypothesis

Bias in one, centralized 
pre-trained model →
bias in many task-specific 
models…

… but upstream, one-time 
mitigation could prevent 
downstream harms

Background Methods Results Takeaways 9



What We Already Know
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● Extrinsic and intrinsic metrics not 
always correlated (Goldfarb-Tarrant et al., 2021)

● We can reduce upstream bias with 
embedding transformations (SentDebias - 
Liang et al., 2020)

● Modified fine-tuning might reduce 
downstream bias (Solaiman & Dennison, 2021; 
Jin et al., 2021)❓
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What we found
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1. Manipulations upstream have little 
impact downstream
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3. But, simple fine-tuning dataset 
alterations only work if the model is 
not pre-trained��
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What We Did
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1. Manipulate upstream model

2. Manipulate fine-tuning dataset

3. See what happens downstream❓

Upstream bias
leads to 
downstream bias?

Bias transfer hypothesis
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First, need a (biased) pre-trained model:
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RoBERTa 165 GB of 
internet text

English 
Wikipedia

BookCorpus

CC-News

OpenWebText 
(Reddit URLs)

Stories

Base model from HuggingFace (Wolf et al., 2020).
Fine-tuned with seq. classification head, 3 epochs.
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Second, need case studies:
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Occupation Classification (De-Arteaga et al., 2019)

Data: >400,000 online biographies (28 occupations) with 
he/him or she/her pronouns
Task: Predict someone’s occupation from their online 
biography
Harm: Stereotyping she/her bios → hiring discrimination
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Occupation Classification (De-Arteaga et al., 2019)

Data: >400,000 online biographies (28 occupations) with 
he/him or she/her pronouns
Task: Predict someone’s occupation from their online 
biography
Harm: Stereotyping she/her bios → hiring discrimination

Downstream Bias

True positive ratio

an occupation

Low when she/her 
bios are overlooked 
more often - e.g. for 
surgeon bios
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Occupation Classification (De-Arteaga et al., 2019)

Data: >400,000 online biographies (28 occupations) with 
he/him or she/her pronouns
Task: Predict someone’s occupation from their online 
biography
Harm: Stereotyping she/her bios → hiring discrimination

Upstream Bias (Kurita et al., 2019)

Pronoun ranking: measure likelihood of 
“he is a(n) {occupation}” vs. “she is a(n) {occupation}”

Low when she/her bios is less likely to proceed this occupation  - e.g. 
for surgeon bios
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Second, need case studies:
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Toxicity Classification (Dixon et al., 2018)

Data: 130,000 comments from WikiTalks containing 50 
identity terms, labelled toxic or non-toxic
Task: Predict if text is “rude, disrespectful, or unreasonable”
Harm: Blocking harmless mentions of identity groups → 
systematic censorship
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Toxicity Classification (Dixon et al., 2018)

Data: 130,000 comments from WikiTalks containing 50 
identity terms, labelled toxic or non-toxic
Task: Predict if text is “rude, disrespectful, or unreasonable”
Harm: Blocking harmless mentions of identity groups → 
systematic censorship

Downstream Bias 

False positive bias

an identity

High when this identity is erroneously censored 
more often than the norm, e.g. for gay
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Toxicity Classification (Dixon et al., 2018)

Data: 130,000 comments from WikiTalks containing 50 
identity terms, labelled toxic or non-toxic
Task: Predict if text is “rude, disrespectful, or unreasonable”
Harm: Blocking harmless mentions of identity groups → 
systematic censorship

Upstream Bias (Hutchinson et al., 2020)

“{identity} person is [MASK]” - then score sentiment of 
prediction (using TweetEval classifier)
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Results
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Upstream Mitigation

debiased embedding “gender subspace”

(Liang et al., 2020)

Background Methods Results Takeaways

he/him surgeons 30% 
more often correctly 
identified than she/her

Mitigating bias upstream 
doesn’t mitigate bias 
downstream
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Just changing bias upstream doesn’t change bias downstream

Bios (occupation classification) - 
averaged across 10 trials
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Just changing bias upstream doesn’t change bias downstream

Wiki (toxicity classification)  - 
averaged across 10 trials
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But… upstream and downstream bias are correlated
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One reason: common cultural artifacts
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Fine-tuning dataset bias helps explain

Bios (occupation classification) - FE estimates, p<0.01

10% increase in she/her →
6.5% increase in TPR ratio

Largest mitigation of 
pronoun gap → 
0.5% increase in TPR ratio
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Fine-tuning dataset bias helps explain

Wiki (toxicity classification) - FE estimates, p<0.01

One std. dev. increase in negative sentiment →
3.7% increase in FPR ratio

10% increase in toxic mentions → 
6.3% increase in FPR
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What if we “de-bias” the 
fine-tuning dataset?

Only works when the 
model is not pre-trained…

… so pre-trained model 
does confer some 
prejudice

Background Methods Results Takeaways 28



 So, what to do about pre-trained model bias?
A proposed solution

Fine-tune on small, 
values-targeted dataset
(Solaiman & Dennison, 2021)
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 So, what to do about pre-trained model bias?
Our conclusion

Not a terrible idea for other tasks!

Still, fine-tuned model might be 
resistant to simple fixes

Background Methods Results Takeaways

A proposed solution

Fine-tune on small, 
values-targeted dataset
(Solaiman & Dennison, 2021)

Better: upstream and downstream 
debiasing

Best: focus on value-oriented data 
curation at both stages

30



Going Forward
● How much of this generalizable? More studies on bias transfer!

○ Impossibility results (Lechner et al., 2021)

○ Deep metric learning (Dellerud et al., 2022)

● To what extent can powerful developers prevent harm downstream?

● Don’t ship models that cause harm
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Thank you!
Comments or questions? 

ryansteed@cmu.edu
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